
Derek Hower, James Ball, Conrado Blasco, Manu Gulati

Qualcomm Technologies, Inc.

A Case to Remove C from
App Profiles

2

C Extension – Compressed (16-bit) instruction encodings

32-bit
encodings

22%

Unusable -
> 32-bit

encodings
3%

Unusable -
16-bit

encodings
75%

32-bit Instruction Codepoints

31 0
RISC-V Instruction

• C defines compressed re-encodings of common 32-bit
instructions

• No new instructions – always 1:1 mapping between 16/32-
bit

• 2 LSBs of instruction identify length

• 3 of 4 values indicate 16-bit

• 1 of 4 values indicate >= 32-bit

• C binaries are packed: 32-bit encodings can be unaligned

Facts

C prefix

3

Problems with C in high performance designs

Pushes RISC-V to large opcodes

• RISC-V is nearly out of 32-bit opcodes

• Move to > 32-bit opcodes will degrade

code size

0

200000

400000

600000

800000

1000000

1200000

1400000

geomean

Code Size - SPEC 2006
GEOMEAN

aarch64 x86_64 rv64g

Substantial design complexity

• Unaligned fetch is challenging to

design, verify

• Cache line, page crossing instructions

• Increased wire delay/muxing

• Leads to designs that are:

• more expensive (NRE)

• slower (extra pipe stages)

• buggy (see Intel Jump Code Conditional)

Performance benefit is modest

• Best case: 2-3% speedup

• Often: slowdown (net negative when

program fits in icache)

0.96
0.97
0.98
0.99

1
1.01
1.02
1.03
1.04

b
a

s
e

C
 i
d

e
a

l

C
 r

e
a

lis
ti
c

b
a

s
e

C
 i
d

e
a

l

C
 r

e
a

lis
ti
c

b
a

s
e

C
 i
d

e
a

l

C
 r

e
a

lis
ti
c

b
a

s
e

C
 i
d

e
a

l

C
 r

e
a

lis
ti
c

SPEC Cpu
 2017 Int

Browser SPEC Cpu
2017 Int

Browser

Big CPU Small CPU

Speedup

https://www.intel.com/content/dam/support/us/en/documents/processors/mitigations-jump-conditional-code-erratum.pdf

4

C is not needed

1

1.30

1.04

0.92

0

0.2

0.4

0.6

0.8

1

1.2

1.4

GEOMEAN

SPEC CPU Int 2006
Static Code Size (.text section), LLVM 16.0

aarch64 x86_64 rv64g_zba_zbb_zbs rv64g_zba_zbb_zbs_zNEW

• RV64G is already competitive on code size

• RV64G + 32-bit instructions for code size is
best in class

• More ld/st addressing modes

• Ld/st pair

• Conditional immediate branches

• Move pair

• RV64GC has little performance benefit in beefy
designs

5

Diverging profiles

Unaligned Encoding Profile

Aligned Encoding Profile

?

32-bit encodings to
improve code size

48/64-bit instructions

32-bit instructions in “C” space /
small number of aligned 64-bit instructions

Prohibit “C”

RVA22

microcontroller

app

• Remove C from application profiles

• Once removed, the C opcode space can be reclaimed to keep code size down long term

• It’s not too late: commercial distros have not picked a base

• But, time is running short

Meeting Break,
resuming 10/5/2023

7

C in RISC-V Profiles, Continued

• Recap:

• C extension consumes 75% of 32-bit instruction codepoints

• C has small (in some cases negative) upside in apps processors

• C is difficult to design/verify, will lead to bugs

• RISC-V should split profile lineages

• Now:

• Evaluate RISC-V dynamic instructions:

• With C

• With Znew

• Compared to AArch64

Znew Instructions

• Load/store addressing modes
• Register-register
• Scaled register-register
• PC-relative

• Pre/post increment load/stores
• Load/store pair
• Move pair
• Conditional immediate branch

Unaligned Encoding Profile

Aligned Encoding Profile

?

Znew 48/64-bit instructions

32-bit instructions in “C” space /
small number of aligned 64-bit instructions

Prohibit “C”

RVA22

microcontroller

app

8

RISC-V Dynamic Instruction Evaluation

1.00 1.00

0.84

1.00

0.79
0.84

0

0.2

0.4

0.6

0.8

1

1.2

RV64 RV64C RV64_Znew

SPEC CPU 2017 Int*

Dynamic Instruction Count Total Bytes Fetched

* Excludes x264 (Compiler does not vectorize)

• Znew evaluation methodology:

• Analyze RISC-V instruction stream, find/replace

sequences that have single Znew equivalent

• Conservative: no compiler help generating sequences

• Forward-looking: with compiler help (next slide)

• Metrics

• Dynamic instruction count → pipeline pressure

• Total bytes fetched → icache pressure

• Result:

• C extension does not affect dynamic instruction count

(no new instructions)

• Znew is effective at reducing dynamic instructions

• C extension reduces the number of bytes fetched

• Using 75% of 32-bit encoding space

• Znew reduces dynamic instruction pressure in both

metrics

• Using < 1% of 32-bit encoding space

P
re

lim
in

a
ry

Compiler: gcc 11, -Ofast

0.730.73

9

Dynamic Comparison to AArch64

• Forward-looking Methodology:

• Analyze AArch64 instruction stream, pseudo-translate

each instruction into RV equivalent(s)

• Neutralizes compiler differences (even within same toolchain)

• Evaluation with compiler that knows about many Znew instructions

• Evaluation methodology validated to < 5% average error

• Result:

• RV64, with or without C, has more dynamic instructions

• But not always: mcf is branch-heavy, benefits from RV fused

compare/branch

• RV64_Znew has ~19% fewer dynamic instructions

• Better than AArch64 because most instructions have 1:1 mapping, plus

RV has fused compare/branch

Compiler: LLVM/Clang 12.0, -O3

* 456.hmmer and 464.h264ref removed to avoid vector

1.11

0.81

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D
y
n

a
m

ic
 i
n

s
tr

u
c
ti
o

n
 c

o
u

n
t

SPEC CPU 2006 Int*

AArch64 RV64 RV64_Znew

Follow us on:

For more information, visit us at:

qualcomm.com & qualcomm.com/blog

Thank you
Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other products and

brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated, Qualcomm

Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate

structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the

vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm

Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and

development functions, and substantially all of our products and services businesses, including our

QCT semiconductor business.

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or

its subsidiaries. Qualcomm patented technologies are licensed by Qualcomm Incorporated.

11

Znew Forward-looking Evaluation Strategy

• Ideal: implement in compiler, compare to AArch64 too much effort at this point

• Strategy: pretend we can binary translate optimized AArch64 to RISC-V, evaluate code size

• Baseline:

• AArch64 load or store expands to one or more RISC-V instructions

• AArch64 cmp/br pairs collapse to one (or more, target is ≥ 4KiB away) RISC-V instructions

• AArch64 vector instructions expand to num_elements RISC-V instructions

• AArch64 DC ZVA expands to 64/8 = 8 RISC-V instructions

• All other AArch64 instructions translate to exactly one RISC-V instruction

• Znew:

• Same, but account for Znew in translation

• Validate:

• Estimated RISC-V code size w/o Znew should match actual RISC-V code size

12

• Validation: RV64 mean
actual/estimated within
tolerance

• RV64GC actual is sometimes
better in branch-heavy code

Validation
Methodology is valid if green bars are similar height

60%

80%

100%

120%

140%

160%

180%

200%

In
s
tr

u
c
ti
o

n
 C

o
u

n
t

SPEC Int 2006

AArch64 RV64GC actual RV64G estimated

RV64GC binaries run through ISS

estimated AArch64 -> RV64G translation (no Znew)

	Slide 1: A Case to Remove C from App Profiles
	Slide 2: C Extension – Compressed (16-bit) instruction encodings
	Slide 3: Problems with C in high performance designs
	Slide 4: C is not needed
	Slide 5: Diverging profiles
	Slide 6: Meeting Break, resuming 10/5/2023
	Slide 7: C in RISC-V Profiles, Continued
	Slide 8: RISC-V Dynamic Instruction Evaluation
	Slide 9: Dynamic Comparison to AArch64
	Slide 10
	Slide 11: Znew Forward-looking Evaluation Strategy
	Slide 12: Validation

