
Understanding IOreg and Correlation To A DSDT

By (c) RampageDev.Wordpress.com All Rights Reserved

Your IOreg is a direct representation of your DSDT. The majority
of the addresses and their respective names are loaded from the
DSDT. This guide will show you how to read a IOreg and use it
when editing a DSDT.

Guide:

Part 1: IOreg App

1. Download IOreg here

2. Open up your Downloads folder in Finder and locate this app:

3. Drag this entier folder to Applications:

http://dl.dropbox.com/u/88732606/Apps/IORegistryExplorer.zip

4. Now open Launchpad and locate this app and open it:

5. Now you will see the following screen:

6. Now go to File\Save As:

7. Save this file to the desktop:

Part 2: DSDT Editor

1. Download DSDT Editor here

2. Open up your Downloads folder in Finder and locate this folder
this folder:

3. Drag this entier folder to Applications:

http://olarila.com/dsdt/DSDTEditor_Mac.zip

4. Now open Launchpad and locate this app and open it:

5. Now if you have not installed Java it will ask you to do so

6. Now go to File\Extract DSDT:

Note this will extract your current DSDT if you are currently
using one

7. You should now see the code that makes up your DSDT:

8. Now go to IASL\Compile:

9. The following screen will appear:

This screen shows all of the errors we will have to fix

10. Now in this screen click Fix Errors

11. Now that the app addressed some generic errors we will now
start applying other fixes to resolve all of the errors.

12. Now we will patch the following errors:

Use of complier reserved name (_T_#)

13. Go to Patch\Open:

Go to Applications\DSDT Editor\Patches to see the patches

14. Locate and open the Desktop folder and then open _T_X
rename.txt:

15. A new screen will appear and click apply to apply the patch to
your DSDT:

16. Now go to IASL\Compile:

17. The following screen will appear and you will notice that some
of the errors are removed then click on fix errors to compile:

18. Now we will patch the following errors:

Result is not used, possible operator timeout will be missed

19. Go to Patch\Open:

Go to Applications\DSDT Editor\Patches to see the patches

20. Go to the main Patches folder and then locate and open
possible operator timeout will be missed.txt:

21. A new screen will appear and click apply to apply the patch to

your DSDT:

22. Now go to IASL\Compile:

23. The following screen will appear and you will notice that there
are no longer any errors then click on fix errors to compile:

Your DSDT may have more errors that need to be patched. At the
next section of this guide will address common errors with how

to fix them

24. Now go to IASL\Save AML as...:

25. Now save it as ER.aml to your Desktop:

ER means Errors Removed and will be considered a safe version

26. Now copy ER.aml to your extra folder and rename it
DSDT.aml and restart your computer and if it restarts without a

Kernel Panic then continue

If the system will not restart with the DSDT installed boot using
the following boot flag which is case sensitive: DSDT=No

Part 3: Error Troubleshooting and Device Patching

Common Errors:

Not all control paths return a value (xxxx)

1. Go to the method in question

2. Add Return (Zero) to the bottom of the method:

3. Compile and the error will be removed

4. Now save it as 1.aml to your Desktop:

The next version will be called 2 then 3 and so on

ResourceTag smaller then Field (Tag: xx bits, Felid: xx
bits)

The error is stating that the address is the wrong length. This
needs to be corrected by changing it to the proper address length.
For example the system needs a 16 bit address however there is a
64bit address present. So it would look like this,
CreateDWordField. This is a 64 bit address and thus we are
receiving a error. So to fix the error we must change it to at 16 bit
address, CreateWordField .

This is the list of the address lengths:

DWord=64 bits
QWord=32 bits

Word=16 bits
Byte=8 bits

1. Go to the error in question and look at the Field in the error
which in this example is 64 bits

 CreateQWordField

2. Change this to

 CreateDWordField

3. Compile and the error will be removed

4. Now save it as 1.aml to your Desktop:

The next version will be called 2 then 3 and so on

Not all control paths return a value (xxxx) must return
value with buffer

1. Go to the method in question

2. Locate the end of the method as you did before with Return

(Zero) patch

3. Instead of adding Return (Zero) add the following:

 Return (Buffer (0x01)
{

 Zero
 })

4. Compile and the error will be removed

5. Now save it as 1.aml to your Desktop:

The next version will be called 2 then 3 and so on

Device Patching:

1. Now open ER.aml from your Desktop and at this point I will
assume you understand where the patches are and how to apply
so my description will be less detailed

2. The first patch we will apply are the most common patches.

Find the following patches and apply them:

Mac devices.txt (Changes device names to match a real
Macintosh and make sure you apply twice because not all device
will be renamed the first time)
DTGP.txt (Needed for other patches but make sure your DSDT
does not already have this device before applying)
SBUS.txt (To load SBUS controller kext)
RTC.txt (Stop BIOS reseting)
HDEF.txt (If you are not using a voodoo audio driver)

Part 3: Advanced Patching

Syntax error, unexpected PARSEOP_ARG0, Expecting '('

1. Go to the method in question

2. There is information missing and we need to add it to both IF
statements

3. Store (HDSE) should look like this

4. Store (HDSE) should look like this

4. Compile and the error will be removed

5. Now save it as 1.aml to your Desktop:

The next version will be called 2 then 3 and so on

6. This is just one example of this type of error and your error may
be cause be something else such as the use of a . instead of a) or a

missing }

Adding Device ID's

1. Find the device you wish to add a Device ID to

2. Add this method to the device and then change the device-id
0x49, 0x1c, 0x00, 0x00 to your desired id

 Method (_DSM, 4, NotSerialized)
 {
 Store (Package (0x02)
 {
 "device-id",
 Buffer (0x04)
 {
 0x49, 0x1c, 0x00, 0x00 /* Note the device ID
from the Intel Technical Documents would look like 1C49 so you
must flip the values */
 }
 }, Local0)
 DTGP (Arg0, Arg1, Arg2, Arg3, RefOf (Local0))
 Return (Local0)
 }

3. Compile

54 Now save it as 1.aml to your Desktop:

The next version will be called 2 then 3 and so on

Part 4: Understanding IOreg and Correlation To A DSDT
Basics

1. Open the file that you save to the desktop in part one:

2. Now you will see the following screen:

3. A break down of the screen that first comes up:

4. Now click on HPET:

5. Now open your ER.aml or 1.aml depending on how many
versions you have made

6. Now press Command+F to open the find box and type in the
name of your HPET name which in this case is PNP0103 and
should be the same for yours:

7. Then you will see the beginning of the HPET device:

8. This will not be the case for the majority of the devices present
in your DSDT. The address is what will be key for the majority of
the devices that concern us

9. Next find PCI0@0 sometimes this will be PCI1@0 and this is
when the PCIrootUID=0 or 1 comes from because OS X can not
find the GPU because the default in the boot loader is 0

Basic ID's

10. Under this device you find all of your devices. This will allow

you to check to see if the kexts for your hardware is loaded and
working

11. This is an example of what a Nvidia Graphic Card working in
the IOreg. Under NVKernal it will show all of the drivers loaded

Showing the kexts loaded for the Nvidia GPU

Part 4: Understanding IOreg and Correlation To A DSDT

Advance (Addresses)

1. Now looking at this picture from the IOreg you see PEGP@1
and HDAU@0,1. So how does this relate to your DSDT?

2. Looking at the DSDT you will see PEGP with the Address of
0x00010000 this is equal to 1. Address 0x00020000 would be
equal to 2 and so on.

3. Looking at the DSDT you will see HDAU with the Address of
one this is equal to 1. However you will see in the IOreg
HDAU@0,1. The 0 is from the GPU because it is tied to it. And the
1 is the direct address of HDAU.

4. Now we will look at a non standard address which will be for
HDEF.

5. Looking at the DSDT you will see HDEF with the Address of
0x001B0000 this is equal to 1B.

6. Now you should be able to understand how to relate the IOreg
and DSDT

Part 5: DSDT Complete

1. Read this document if you need to find some exotic edit or just
have a lot of free time:

http://real-world-systems.com/docs/
ACPIspec30bx.html#_Toc148320581

http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf

