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Abstract 
 
Multiple-precision modular multiplications are the key 

components in security applications, like public-key 
cryptography for encrypting and signing digital data. But 
unfortunately they are computationally expensive for 
contemporary CPUs. By exploiting the computing power of 
the many-core GPUs, we implemented a multiple-precision 
integer library with CUDA. In this paper, we will investigate 
the implementation of two approaches of multiple-precision 
modular multiplications on GPU. We will analyze the detail of 
the instructions of multiple-precision modular multiplication 
on the GPU and find the hit issues, and then we propose to use 
the inline ASM to improve the implementation of this function. 
Our experimental results show that the performance of 
multiple-precision modular multiplication has been improved 
by 20%. 
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1. Introduction 

In recent years, peer-to-peer (P2P) content distribution 
applications such as BitTorrent and ppLive, have become the 
most popular Internet applications due to their scalability and 
robustness. Network coding has been proposed as an effective 
mechanism to improve the performance of such P2P 
applications [14]. However, P2P applications with network 
coding suffer from the notorious pollution attacks: a malicious 
node can send out bogus packets which will be merged into 
other genuine packets and propagated into the whole network 
at an exponential speed. To resolve this problem, 
homomorphic hash functions have to be applied such that the 
hash of any encoded packet can be effectively derived from 
the hashes of the original packets, which enables the detection 
of bogus packets before a peer encodes it with other packets 
[12]. Unfortunately homomorphic hash functions rely on 
multiple-precision modular operations and are 
computationally expensive [10] [12]. 

Recent advances in Graphics Processing Units (GPUs) 
open a new era of GPU computing [20]. For example, 
commodity GPUs like NVIDIA’s GTX 280 has 240 

processing cores and can achieve 933 GFLOPS of 
computational horsepower. More importantly, the NVIDIA 
CUDA programming model makes it easier for developers to 
develop non-graphic applications using GPU [1] [4]. In 
CUDA, the GPU becomes a dedicated coprocessor to the host 
CPU, which works in the principle of Single-Program 
Multiple Data (SPMD) where multiple threads based on the 
same code can run simultaneously.  

In this paper, we present our study of using GPUs for 
multiple-precision modular multiplication, which is the key 
component of not only the homomorphic hashing, but also a 
number of security applications that make use of public-key 
cryptography. We implement two methods of multiple-
precision modular multiplications on NVIDIA GPUs using 
CUDA. One is Coarsely Integrated Operand Scanning (CIOS) 
Montgomery method; the second one is Karatsuba 
multiplication with Montgomery. In order to achieve the 
highest performance, we analyze the ptx code (i.e., the 
assembly code for NVIDIA GPUs) of the implementation. As 
the CUDA PTX standard is not open to the public, we rely on 
the decuda tool to disassemble the compiled binary cubin file 
and search for the bottleneck for an improvement. 

The contribution of this work is twofold: 
• First, we designed and implemented two approaches of 

multiple-precision modular multiplication on the CUDA 
architecture. 

• Second, we analyze the implementation of the directive 
instructions, and use inline ASM to optimize the 
Montgomery algorithm. 

The rest of the paper is organized as follows. Section 2 
provides background information on Karatsuba 
Mulitiplication, Montgomery algorithm, GPU architecture, 
and CUDA programming model. Section 3 presents the design 
of multiple-precision modular arithmetic on GPU. Section 4 
presents the decuda analysis, and then presents our inline 
ASM implementation of the 32-bit integer multiplication. 
Experimental results are presented in Section 5, and we 
conclude the paper in Section 6. 

 
2. Background and Related Work 
 

In this section, we provide the required background 
knowledge of Karatsuba multiplication, Montgomery   
multiplication algorithm, GPU architecture, and CUDA 
programming model. 

 



 
2.1 Karatsuba multiplication 
 

The Karatsuba multiplication algorithm has been described 
by Knuth, which is possible to perform multiplication of large 
numbers in (many) fewer operations than the usual brute-force 
technique of “long multiplication”. As discovered by 
Karatsuba [25] ，multiplication of two n-digit numbers can be 
done with a bit complexity of less than n2 steps using 
identities of the form 
( 10 )( 10 ) [( )( ) ]n na b c d a c a b c d a c b d+ ⋅ + ⋅ = ⋅ + + + − ⋅ − ⋅  

 The inputs x and y are treated as each split into two parts 
of equal length (or the most significant part one limb shorter if 
N is odd). 

Let b be the power of 2 where the split occurs, ie. if x0 is k 
limbs (y0 the same) then b=2(k mp_bits_per_limb). With that 
x=x1 b+x0 and y=y1 b+y0, and the following holds,  
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This formula means doing only three multiplies of  N2/4 
limbs, whereas a base case multiply of N2 limbs is equivalent 
to four multiplies of  N2/4. The factors (b2+b) etc represent the 
positions where the three products must be added. [3] 

The term (x1-x0) ⋅ (y1-y0) is best calculated as an absolute 
value, and the sign used to choose to add or subtract. Notice 
the sum high(x0 y0) + low(x1 y1) occurs twice, so it is 
possible to do 5 ⋅ k limb additions, rather than 6 ⋅ k. 

⋅ ⋅

Squaring is similar to multiplying, but with x = y the 
formula reduces to an equivalent with three squares, 

2 2 2 2
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The final result is accumulated from those three squares the 
same way as for the three multiplies above. The middle term 
(x1-x0)2 is now always positive. 

A similar formula for both multiplying and squaring can 
be constructed with a middle term (x1+x0) (y1+y0). But those 
sums can exceed k limbs, leading to more carry handling and 
additions than the form above. 

⋅

Karatsuba multiplication is asymptotically an O(N1.585) 
algorithm, the exponent being log(3)/log(2), representing 3 
multiplies each 1/2 the size of the inputs. This is a big 
improvement over the base case multiply at O(N2) and the 
advantage soon overcomes the extra additions Karatsuba 
performs.  

2.2  Montgomery Multiplication  

The classical modular multiplication is suitable for normal 
operations. However, when performing modular 
exponentiations, Montgomery multiplication shows much 
better performance advantage [5]. The following gives the 
Montgomery reduction and Montgomery multiplication 
algorithms. 

Montgomery reduction is an algorithm introduced in 1985 
by Peter Montgomery that allows modular arithmetic to be 
performed efficiently when the modulus is large (typically 
several hundred bits). 

Let m be a positive integer, and let R and A be integers 
such that R > m, gcd(m, R) = 1, and 0 A m R≤ < ⋅ . The 
Montgomery reduction of A modulo m with respect to R is 
defined as 1A R−⋅  mod m. In our applications, R is chosen as 

 to simply the calculation. nb
Algorithm 1 Multiple-precision Montgomery Reduction 

INPUT: integer m with n radix b digits and gcd(m, b) = 1,  
,  mod b, and integer A with 2n radix b digits 

and 

nbR =
A

1' −−= mm
Rm ⋅<  . 

OUTPUT: T =  mod m. 1−⋅RA

1:    AT ← ; 
2:    for ( i from 0 to 1−n ) 
3:         mod b; 'mTu ii ⋅←

4:        ; i
i bmuTT ⋅⋅+←

5:    end for 
6:    ; nbTT /←
7:    if ( ) then mT ≥ mTT −← ; 
8:    return T; 

 

Algorithm 2 Multiple-precision Montgomery Multiplication 

INPUT: non-negative integer m, x, y with n radix b digits, 
mymx << , , and gcd(m, b) = 1,  ,  mod b. nbR = 1' −−= mm

OUTPUT: T =  mod m. 1−⋅⋅ Ryx

1:    0←T ; 
2:    for ( i from 0 to 1−n ) 
3:         mod b; ')( 00 myxTu ii ⋅⋅+←

4:        bmuyxTT ii /)( ⋅+⋅+← ; 
5:    end for 
6:    if ( ) then mT ≥ mTT −← ; 
7:    return T; 

2.3 In GPU Computing and CUDA 

GPUs are dedicated hardware for manipulating computer 
graphics. Due to the huge computing demand for real-time and 
high-definition 3D graphics, the GPU has evolved into a 
highly parallel, multithreaded, manycore processor. The 
advances of computing power in GPUs have driven the 
development of general-purpose computing on GPUs 
(GPGPU). The first generation of GPGPU requires that any 
non-graphics application must be mapped through graphics 
application programming interfaces (APIs). 

Recently one of the major GPU vendors, NVIDIA, 
announced their new general-purpose parallel programming 
model, namely Compute Unified Device Architecture 
(CUDA) [1] [4], which extends the C programming language 
for general-purpose application development. Meanwhile, 
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another GPU vendor AMD also introduced Close To Metal 
(CTM) programming model which provides an assembly 
language for application development [2]. Intel also exposed 
Larrabee, a new many-core GPU architecture specifically 
designed for the market of GPU computing this year [23]. 

Since the release of CUDA, it has been used for speeding 
up a large number of applications [17] [18] [20] [21] [22].  

The NVIDIA GeForce 8800 has 16 Streaming 
Multiprocessors (SMs), and each SM has 8 Scalar Processors 
(SPs), resulting a total of 128 processor cores. The SMs have a 
Single-Instruction Multiple-Data (SIMD) architecture: At any 
given clock cycle, each SP of the SM executes the same 
instruction, but operates on different data. Each SP can 
support 32-bit single-precision floating-point arithmetic as 
well as 32-bit integer arithmetic. 

Each SM has four different types of on-chip memory, 
namely registers, shared memory, constant cache, and texture 
cache. For GeForce 8800, each SM has 8192 32-bit registers, 
and 16 Kbytes of shared memory which are almost as fast as 
registers. Constant cache and texture cache are both read-only 
memories shared by all SPs. Off-chip memories such as local 
memory and global memory have relatively long access 
latency, usually 400 to 600 clock cycles [4]. The properties of 
the different types of memories have been summarized in [4] 
[17]. In general, the scarce shared memory should be carefully 
utilized to amortize the global memory latency cost. Shared 
memory is divided into equally-sized banks, which can be 
simultaneously accessed. If two memory requests fall into the 
same bank, it is referred to as bank conflict, and the access has 
to be serialized. 

In CUDA model, the GPU is regarded as a coprocessor 
capable of executing a great number of threads in parallel. A 
single source program includes host codes running on CPU 
and also kernel codes running on GPU. Compute-intensive 
and data-parallel kernel codes run on GPU in the manner of 
Single-Process Multiple-Data (SPMD). The threads are 
organized into blocks, and each block of threads are executed 
concurrently on one SM. Threads in a thread block can share 
data through the shared memory and can perform barrier 
synchronization. Each SM can run at most eight thread blocks 
concurrently, due to the hard limit of eight processing cores 
per SM. As a thread block terminate, new blocks will be 
launched on the vacated SM. Another important concept in 
CUDA is warp, which is formed by 32 parallel threads and is 
the scheduling unit of each SM. When a warp stalls, the SM 
can schedule another warp to execute. A warp executes one 
instruction at a time, so full efficiency can only be achieved 
when all 32 threads in the warp have the same execution path. 
Hence, if the number of threads in a block is not a multiple of 
warp size, the remaining instruction cycles will be wasted. 

3. Multiple-Precision Modular Arithmetic for 
CUDA 

In this section, we present a set of library functions of 
multiple-precision modular arithmetic implemented on GPUs. 
These library functions are the cornerstones of the network 
coding system and homomorphic hash functions. It is of 
critical importance to implement these library functions 
efficiently. In modular arithmetic, all operations are performed 
in a group mΖ , i.e., the set of integers {0,1,2, , 1}m −L

,  0im

. In the 
following, the modulus m is represented in radix b as 

 where . Each symbol 1 1m m0( )n n bm m − L 0nm ≠ i n≤ ≤ , 
is referred to as a radix  b digit. Non-negative integers x and y, 

,  x m y m< < , are represented in radix b as 1 1 0( )bn nx x x x− L  
and  respectively. 1 1n ny y y y0 b( − L )

We have implemented the following multiple-precision 
library functions for CUDA: 

• Multiple-precision comparison 
• Multiple-precision subtraction 
• Multiple-precision modular addition 
• Multiple-precision modular subtraction 
• Multiple-precision multiplication 
• Multiple-precision division 
• Multiple-precision multiplicative inversion 

In this paper, we only present the implementation details 
in the Montgomery multiplication and the optimization in this 
paper. 

3.1 CIOS Montgomery Reduction 

The Coarsely Integrated Operand Scanning method 
improves on the first one by integrating the multiplication and 
reduction steps. Specifically, instead of computing the entire 
product ab, then reducing, we alternate between iterations of 
the outer loops for multiplication and reduction. We can do 
this since the value of m in the ith iteration of the outer loop 
for reduction depends only on the value t[i], which is 
completely computed by the ith iteration of the outer loop for 
the multiplication. This leads to the following algorithm: 

Algorithm 3 Multiple-precision Montgomery multiplication 

INPUT: integer m with n radix b digits and gcd(m, b) = 1,  
, positive integer x and y with n radix b digits and nbR = mx <  . 

OUTPUT: x*y*R-1 mod m. 
1. for (i from 0 up to s-1) 
2.     C: = 0 
3.     for ( j from 0 up to s-1) 
4.         (C,S) := t[j] + a[j]*b[i] + C 
5.         t[j] := S 



6.     end for 
7.     (C,S) := t[s] + C 
8.     t[s] := S 
9.     t[s+1] := C 
10.     C := 0 
11.     m := t[0]*n'[0] mod W 
12.     for (j from 0 up to s-1) 
13.         (C,S) := t[j] + m*n[j] + C 
14.         t[j] := S 
15.     end for 
16.     (C,S) := t[s] + C 
17.     t[s] := S 
18.     t[s+1] := t[s+1] + C 
19.     for (j from 0 up to s) 
20.         t[j] := t[j+1] 
21.     end for 
22. end for 
 

Note that the array t is assumed to be set to 0 initially. The 
last j-loop is used to shift the result one word to the right (i.e., 
division by 2w), hence the references to t[j] and t[0] instead of 
t[i+j] and t[i]. A slight improvement is to integrate the 
shifting into the reduction as follows: 

m := t[0]*n'[0] mod W 
(C,S) := t[0] + m*n[0] 
for (j from 1 up to s-1) 
    (C,S) := t[j] + m*n[j] + C 
    t[j-1] := S 
end for 
(C,S) := t[s] + C 
t[s-1] := S 
t[s] := t[s+1] + C 
The auxiliary array t uses only s + 2 words. This is due to 

the fact that the shifting is performed one word at a time, 
rather than s words at once, saving s - 1 words. The final result 
is in the first s+1 words of array t. A related method, without 
the shifting of the array (and hence with a larger memory 
requirement), is described in [2]. 

The CIOS method (with the slight improvement above) 
requires 2s2+s multiplications, 4s2+4s+2 additions, 6s2+7s+2 
reads, and 2s2+5s+1 writes, including the final multi-precision 
subtraction, and uses s+3 words of memory space. The 
memory reduction is a significant improvement over the SOS 
method. 

We say that the integration in this method is "coarse" 
because it alternates between iterations of the outer loop. In 
the next method, we will alternate between iterations of the 
inner loop [24]. 

3.2 Karatsuba Montgomery Reduction 

Modular multiplication can be spared into two parts, one is 
multiplication and one is modular reduction. In this method, 
we choose the Karatsuba multiplication to implement the 
multiplication, and then perform Montgomery reduction. 

Algorithm 4 Multiple-precision Karatsuba and Montgomery 
Multiplication  

INPUT: integer m with n radix b digits and gcd(m, b) = 1,  
, positive integer x and y with n radix b digits and nbR = mx <  . 

OUTPUT: x*y*R-1 mod m. 
1. Karatsuba(x,y) 
2. for (i from 0 up to s-1) 
3.     C := 0 
4.     m := t[i]*n'[0] mod W 
5.     for (j from 0 up to s-1) 
6.         (C,S) := t[i+j] + m*n[j] + C 
7.         t[i+j] := S 
8.     end for 
9.     ADD (t[i+s],C) 
10. end for 
11. for (j from 0 up to s) 
12.     u[j] := t[j+s] 
13. end for 
14. B := 0 
15. for (i from 0  up to s-1) 
16.     (B,D) := u[i] - n[i] - B 
17.     t[i] := D 
18. end for 
19. (B,D) := u[s] - B 
20. t[s] := D 
21. if B=0 then return t[0], t[1], ... , t[s-1] 
22. else return u[0], u[1], ... , u[s-1] 

 

4. Improving the Montgomery Multiplication 

To achieve a high performance, we analyze the 
implementation of the instructions of the Montgomery 
Multiplication. We use the decuda tool to disassemble the 
cubin file of the CUDA binary codes. We will tell the details 
as below. 

4.1 ASM of Integer Multiplication 

When we use the decuda tool disassemble the cubin. We 
get that the 32bit multiplication 32bit integer is not only using 
one instruction but using ten to twenty instructions.  

We can see the MULT64X64LO need more than 20 
instructions, but the MULT32X32WIDE only need 10 
instructions. So, we use inline ASM to limit the compiler 



compile the 32bit multiplication 32bit work with the 10 
instructions. eg.: 

Algorithm 5 32bit integer multiplication 

INPUT: 32bit integer A multiplicative with 32bit integer B. 
OUTPUT:  A*B. 
1. static inline __device__ unsigned __int64 

mul_32x32(unsigned A, unsigned B) { 
2.   unsigned __int64 out; 
3.   asm("mul.wide.u32  %0, %1, %2;" : "=l"(out) : "r"(A), 

"r"(B)); 
4.   return out; 
5. } 

 

5. Implementation and Experimental Results 

We tested these implementations on T61 NVIDIA 
Quadro NVS140M graphic card which contains an NVIDIA 
Quadro G86M GPU. The G86M GPU uses the G80 
architecture with 16 processing cores working at 0.8 GHz. The 
implementation of modular multiplication is in 1024-bit 
integer. All the implementation is 1024-bit multiplied by 
1024-bit modular 1024-bit. 

5.1 Comparing Karatsuba Method and CIOS 
Method 

In Fig. 1, the X-coordinate represents the number of 
threads. As Fig. 1 shows, the karatsuba Montgomery 
multiplication is slow than the CIOS method of Montgomery 
multiplication. The karatsuba Montgomery multiplication 
method needs 60 registers and 5132 local memories. But the 
CIOS method only needs 14 register and no local memory at 
all. The blue block shows the CIOS method of the 
Montgomery Multiplication. The red block shows the method 
with K-MM (Karatsuba Montgomery Multiplication). The K-
MM method needs more variables in the implementation, 
because that can’t use callback function in the CUDA model 
recently, so the 1024bit integer multiplication will be translate 
into 2 256bit integer function, and 256bit to 128bit, and so on. 
So the K-MM method is slow than the CIOS method on the 
recently GPU model. 

The CIOS method only needs 14 registers and using 
unrolling method unroll the loop. 

 

Figure 1. Throughput of Montgomery multiplication and karatsuba 
Montgomery multiplication on GPU using Algorithm 3&4, with 
different number of threads. 

5.2 Montgomery Multiplication with inline 
ASM 

We use the inline ASM to limit the instruction work with 
the Short instruction. The experimental results are shown in 
Fig. 2. The performance has been improved by 20% as 
compared with the one without using our inline ASM code. 

The blue and red block all use the CIOS method. But the 
red one, as the Fig. 2 shows is 20% faster than blue one. 
Because the inside ASM function used to solve the 32bit 
multiplicative 32bit integer. In the decuda code we can see 
that each loop the CIOS-ASM method is 11 instructions little 
than the CIOS method. 

 

Figure 2. Throughput of inline ASM in CIOS on GPU, with different 
number of threads  

6. Conclusions 

Multiple-precision modular multiplication is an important 
component in public-key cryptography for encrypting and 
signing digital data. In this paper, we describe the design, 
implementation and optimization of multiple-precision 
modular multiplication using GPU and CUDA. Although 
Karasuba multiplication is theoretically advantageous, we 
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found that it is not practical for the current GPU platform due 
to the high cost of comparing large integers. Nevertheless, we 
improved the performance of the CIOS method by developing 
an inline ASM implementation of 32-bit integer multiplication. 
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