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RISC-V Terminology
ILEN: maximum instruction size

¯ Currently ILEN=32 across ratified specs
¯ Length encodings >32b not frozen (encoding will change from draft 

in original spec)

IALIGN: RISC-V supports two values:
u IALIGN=32, instructions start at multiple-of-4 byte addresses
u IALIGN=16 instructions start at multiple-of-2 byte addresses
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Why RISC-V adopted variable-length 
(VL) instructions
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u Contemporary instruction sets overflow 32 bits, and fixed 64b instructions 
make code-size uncompetitive

u VL instructions reduce static code size (reduce cost)
u VL instructions reduce dynamic instruction size (improve performance/energy)
u Longer >32b instructions provide substantial code size and/or performance 

benefit for some operations
u Currently only 16b and 32b sizes ratified, but plans for longer >32b

u With current profiles, compilers, benchmarks, general agreement is 
static/dynamic size savings of current C are somewhere in 20-30% range



Technical issues with VL instructions
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u Straddling
u I-cache refill time re-encoding 
u Finding instruction starts



Straddling
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u Instruction may straddle cache line or protection page boundary
u Instructions straddling cache and page boundaries are not a 

significant implementation challenge for competitive superscalar as 

have to fetch across cache-line and page boundaries even with 

fixed-width instructions
u Even with IALIGN=32, straddling unavoidable with ILEN>32, which will 

be inevitable in RVA profiles
u => Not an argument to remove 16b instructions



I-cache Refill-Time Reencoding
u One common trick in older archs is reencoding instructions at refill 

time and executing recoded instructions from I-cache
¯ e.g., convert low bits of branch PC-relative offsets to absolute

u Oblivious re-encoding at I-cache refill time only practical for fixed-
width ISA where instruction start points are fixed

u ILEN>32 makes oblivious reencoding impractical even with IALIGN=32

u More advanced re-encoding schemes are possible with any ISA 
design
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IALIGN=16 doubles potential starts
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u IALIGN=16 has twice as many potential instruction start locations as 

IALIGN=32



Moderate Processor Front-End Critical Loops Impact
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1. BTB tight loop, not affected by IALIGN

2. Other predictors dependent on 

instruction encoding affected by 

having to scan fetch buffer at more 

start points for control-flow redirect

3. Branch resolution latency maybe 

+ve/-ve effect depending on 

changes in mux cost (more starts 

versus fewer bits)



Example: SiFive P870 Front End
u 36-byte fetch is 9-18 RISC-V 

instructions
u Fetch width far above dispatch width 

(6-wide) to quickly refill pipe after PC 
redirects

u Would need ~48 bytes without C

u P870 native RISC-V front-end can scan 
up to 36 bytes with small impact on 
predictor loop latency
¯ Existence proof that wide scanning is 

feasible in high-end native RISC-V 
design
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[from HotChips 2023 presentation on P870]



Scaling to bigger superscalars

u Control-flow changes on integer workloads already at point where 
wider front end will have to predict multiple PCs to be effective

u Taken branch frequency puts upper limit on problem of control-flow 
scanning in middle of front-end

u In any case, move to larger BTB structures that are decoupled from 
instruction fetch (and hence encoding) makes finding instruction 
start boundaries less critical
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Qualcomm proposal
u Fix IALIGN=32 in future RVA profiles
u Add complex 32b instructions to mitigate 30-40% code size increase
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Opcode usage
u Current RISC-V 30b opcode space still has vast space available

¯ Approx 10,000 R-type instructions slots available
¯ e.g. ”Znew” proposal fits in small fraction of brownfield space

u Sacrificing C to open up other 3 encodings in 2 bits doesn’t help with encoding new 
instructions that need substantially greater than 30-32b to encode
¯ e.g., 32b immediates, longer calls, more source/destination register specifiers

u IALIGN=16 supports 16b HINTs (e.g. existing NTL hint)
¯ HINTs tend to occur in hot loops, impacting dynamic fetch costs

u IALIGN=16 supports C.MOPS which reduce code size cost of new security features
¯ Checks add code at exit/entry to every function+ indirect branch targets

u IALIGN=16 enables 48b instructions that substantially improve code size
¯ E.g., Just replacing 64b AUIPC-based sequences in Linux kernel with 48b 

instructions would save 3.6% code size over and above linker relaxation)
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Complex Instruction Problems
u Moving from simple 32b instructions to complex 32b instructions adds 

considerable mid-core complexity
u Cracking high-frequency instructions in a superscalar requires complex 

decode->dispatch buffer management and increases per-instruction 
tracking costs
¯ While low-frequency instructions can be cracked more simply by 

serializing instruction execution (e.g., CAS), highly superscalar cracking is 
significantly more expensive.

u Variable amount of cracking in highly superscalar decode adds mux 
complexity in downstream uop queue datapath that can add to branch 
resolution latency, removing/reversing purported advantage over C

u Substantially complicates ALL core designs, as even simple cores now 
require cracking circuitry, while not matching code size savings of C.

u In contrast, complex cores may selectively “fuse” C only when maps to a 
single internal uop, whereas cracking is effectively mandatory for all 
microarchitectures. 13



Binary ecosystems run on small cores
u Binary software ecosystems are not only for large superscalar processors

¯ Many small processors need to run this software in environments where 
static code size and processor area are critical cost factors

¯ e.g., in-order dual-issue (e.g., ARM A53/A55) very popular for Android, 
perhaps the most common cores numerically

¯ Requiring increase from 32KB to 48KB I-cache is considered very 
negatively (RV64GC has substantial advantage over AArch64 for sockets 
upgrading from AArch32).

¯ Single-digit % memory size savings are significant in these markets 
running binary software distributions. E.g., some sockets are memory-
constrained and requesting ILP32 ABI for RV64GC to cut data segment 
size (possible 10-15% saving)

¯ This will continue to be a large market segment for RVA, not going away
u Not realistic to expect software ecosystems to support both IALIGN=16 and 

IALIGN=32 binaries.
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Summary
u Dropping C will cause large disruption in software ecosystem, both 

one-off and on-going
¯ Without new complex instructions, code-size penalty will hurt 

RISC-V adoption, and any complex instruction extension will take 
time to ratify/implement/support even if community agrees to 
proceed, causing significant delay (>12 months?) in stabilizing the 
ecosystem at critical time in RISC-V rollout

¯ Needing separately tuned/QA builds of common ecosystem 
components across IALIGN=16 and IALIGN=32 profiles adds to 
RISC-V software burden and builds in permanent fragmentation

u No clearly discernible technical benefit for native RISC-V cores, and 
some clear technical disadvantages for both low-end and high-
end implementations
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