
Retaining C (IALIGN=16) 
for RVA Profiles
Krste Asanovic
October 12, 2023

Confidential 

©2022 

SiFive

1



RISC-V Terminology
ILEN: maximum instruction size

¯ Currently ILEN=32 across ratified specs
¯ Length encodings >32b not frozen (encoding will change from draft 

in original spec)

IALIGN: RISC-V supports two values:
u IALIGN=32, instructions start at multiple-of-4 byte addresses
u IALIGN=16 instructions start at multiple-of-2 byte addresses

2



Why RISC-V adopted variable-length 
(VL) instructions

3

u Contemporary instruction sets overflow 32 bits, and fixed 64b instructions 
make code-size uncompetitive

u VL instructions reduce static code size (reduce cost)
u VL instructions reduce dynamic instruction size (improve performance/energy)
u Longer >32b instructions provide substantial code size and/or performance 

benefit for some operations
u Currently only 16b and 32b sizes ratified, but plans for longer >32b

u With current profiles, compilers, benchmarks, general agreement is 
static/dynamic size savings of current C are somewhere in 20-30% range



Technical issues with VL instructions

4

u Straddling
u I-cache refill time re-encoding 
u Finding instruction starts



Straddling

5

u Instruction may straddle cache line or protection page boundary
u Instructions straddling cache and page boundaries are not a 

significant implementation challenge for competitive superscalar as 

have to fetch across cache-line and page boundaries even with 

fixed-width instructions
u Even with IALIGN=32, straddling unavoidable with ILEN>32, which will 

be inevitable in RVA profiles
u => Not an argument to remove 16b instructions



I-cache Refill-Time Reencoding
u One common trick in older archs is reencoding instructions at refill 

time and executing recoded instructions from I-cache
¯ e.g., convert low bits of branch PC-relative offsets to absolute

u Oblivious re-encoding at I-cache refill time only practical for fixed-
width ISA where instruction start points are fixed

u ILEN>32 makes oblivious reencoding impractical even with IALIGN=32

u More advanced re-encoding schemes are possible with any ISA 
design

6



IALIGN=16 doubles potential starts

7

u IALIGN=16 has twice as many potential instruction start locations as 

IALIGN=32



Moderate Processor Front-End Critical Loops Impact

8

I$

Fetch Buffer

Dispatch Buffer

Issue 
Windows

Control-Flow Scan

Decode

Branch Resolve

Next PC redirect

PC
BTB

T/NT
RAS

Indirect

1

2

3

1. BTB tight loop, not affected by IALIGN

2. Other predictors dependent on 

instruction encoding affected by 

having to scan fetch buffer at more 

start points for control-flow redirect

3. Branch resolution latency maybe 

+ve/-ve effect depending on 

changes in mux cost (more starts 

versus fewer bits)



Example: SiFive P870 Front End
u 36-byte fetch is 9-18 RISC-V 

instructions
u Fetch width far above dispatch width 

(6-wide) to quickly refill pipe after PC 
redirects

u Would need ~48 bytes without C

u P870 native RISC-V front-end can scan 
up to 36 bytes with small impact on 
predictor loop latency
¯ Existence proof that wide scanning is 

feasible in high-end native RISC-V 
design

9

[from HotChips 2023 presentation on P870]



Scaling to bigger superscalars

u Control-flow changes on integer workloads already at point where 
wider front end will have to predict multiple PCs to be effective

u Taken branch frequency puts upper limit on problem of control-flow 
scanning in middle of front-end

u In any case, move to larger BTB structures that are decoupled from 
instruction fetch (and hence encoding) makes finding instruction 
start boundaries less critical

10

Average over all samples Average in single trace sample

(no Zicond) 



Qualcomm proposal
u Fix IALIGN=32 in future RVA profiles
u Add complex 32b instructions to mitigate 30-40% code size increase

11



Opcode usage
u Current RISC-V 30b opcode space still has vast space available

¯ Approx 10,000 R-type instructions slots available
¯ e.g. ”Znew” proposal fits in small fraction of brownfield space

u Sacrificing C to open up other 3 encodings in 2 bits doesn’t help with encoding new 
instructions that need substantially greater than 30-32b to encode
¯ e.g., 32b immediates, longer calls, more source/destination register specifiers

u IALIGN=16 supports 16b HINTs (e.g. existing NTL hint)
¯ HINTs tend to occur in hot loops, impacting dynamic fetch costs

u IALIGN=16 supports C.MOPS which reduce code size cost of new security features
¯ Checks add code at exit/entry to every function+ indirect branch targets

u IALIGN=16 enables 48b instructions that substantially improve code size
¯ E.g., Just replacing 64b AUIPC-based sequences in Linux kernel with 48b 

instructions would save 3.6% code size over and above linker relaxation)

12



Complex Instruction Problems
u Moving from simple 32b instructions to complex 32b instructions adds 

considerable mid-core complexity
u Cracking high-frequency instructions in a superscalar requires complex 

decode->dispatch buffer management and increases per-instruction 
tracking costs
¯ While low-frequency instructions can be cracked more simply by 

serializing instruction execution (e.g., CAS), highly superscalar cracking is 
significantly more expensive.

u Variable amount of cracking in highly superscalar decode adds mux 
complexity in downstream uop queue datapath that can add to branch 
resolution latency, removing/reversing purported advantage over C

u Substantially complicates ALL core designs, as even simple cores now 
require cracking circuitry, while not matching code size savings of C.

u In contrast, complex cores may selectively “fuse” C only when maps to a 
single internal uop, whereas cracking is effectively mandatory for all 
microarchitectures. 13



Binary ecosystems run on small cores
u Binary software ecosystems are not only for large superscalar processors

¯ Many small processors need to run this software in environments where 
static code size and processor area are critical cost factors

¯ e.g., in-order dual-issue (e.g., ARM A53/A55) very popular for Android, 
perhaps the most common cores numerically

¯ Requiring increase from 32KB to 48KB I-cache is considered very 
negatively (RV64GC has substantial advantage over AArch64 for sockets 
upgrading from AArch32).

¯ Single-digit % memory size savings are significant in these markets 
running binary software distributions. E.g., some sockets are memory-
constrained and requesting ILP32 ABI for RV64GC to cut data segment 
size (possible 10-15% saving)

¯ This will continue to be a large market segment for RVA, not going away
u Not realistic to expect software ecosystems to support both IALIGN=16 and 

IALIGN=32 binaries.

14



Summary
u Dropping C will cause large disruption in software ecosystem, both 

one-off and on-going
¯ Without new complex instructions, code-size penalty will hurt 

RISC-V adoption, and any complex instruction extension will take 
time to ratify/implement/support even if community agrees to 
proceed, causing significant delay (>12 months?) in stabilizing the 
ecosystem at critical time in RISC-V rollout

¯ Needing separately tuned/QA builds of common ecosystem 
components across IALIGN=16 and IALIGN=32 profiles adds to 
RISC-V software burden and builds in permanent fragmentation

u No clearly discernible technical benefit for native RISC-V cores, and 
some clear technical disadvantages for both low-end and high-
end implementations

15


