
2

an eigensubspace by the substitution θR = Qθk where
Q is the matrix which diagonalizes A.

θ
†
RAθR = θ

†
kQ

†AQθk

= θ
†
kDθk (6)

= λk|θk|2

We can find the eigenvalues λk = ω2
k by considering the

approach outlined in Mazenko [1]. We begin by defining

φ(Ri,Rj) ≡ ∂

∂θ(Ri)

∂

∂θ(Rj)
H

=
S2

4

∑
Rk,Rl

JRkRl

∂

∂θ(Ri)

∂

∂θ(Rj)
[θ(Rk) − θ(Rl)]

2

= JS2
∑
a

[
δRi,Rj − δRi+a,Rj

]
(7)

Using this result, we can now find the dynamical matrix

D(Ri,Rj) ≡ δRi,Rj

∑
Rl

φ(Ri,Rl) − φ(Ri,Rj)

D(R) = JS2

[∑
a

δR,a − 2dδR,0

]
(8)

where d is the dimension of the system, and we have as-
sumed a hypercubic lattice. Taking the Fourier transform
of Equation 8 we obtain our dispersion relation

ω2
k = D(k) = 2JS2d [1 − cos(k · a)]

= 4JS2d sin2

(
k · a

2

)
# JS2d(k · a)2, for k small (9)

Thus we see that ωk depends linearly on k and the con-
stant of proportionality, which represents the phase ve-
locity of the spin wave is given by

cs =
√

JdSa ∼
√

J (10)

That is, the wave speed goes as the square root of the ex-
change coupling energy. We can now rewrite our Hamil-
tonian

H = Ho + Hθ

= −S2γNJ

4
+

1

2

∑
k

ω2
k|θk|2 (11)

setting A = e−βH0 the associated partition function is
then

QN = A

∫ ∞

0
dNθk e−

β
2

P
∞

k=1
ω2

k|θk|2

= A
∏
k

√
2πkbT

ω2
k

(12)

LONG RANGE SPIN CORRELATIONS

We can evaluate long range spin correlations in our
system by computing the mean value of spin-spin inter-
actions between different locations in our lattice.

C(R) = 〈SR1
· SR2

〉
= S2 〈cos[θ(R) − θ(R′)]〉
= S2(e

〈
ei[θ(R)−θ(R′)]

〉
(13)

The evaluation of this average may be determined by
taking a cumulant expansion [2] of the form

〈
eλU

〉
= exp

[
i C1 (U) − 1

2
C2 (U) + . . .

]

= exp

[
i 〈U〉 − 1

2

〈
[U − 〈U〉]2

〉
+ · · ·

]
(14)

The cumulant is an expansion in statistical moments
about the distribution mean. The third and fourth cu-
mulants, measuring the skewness and kurtosis of the dis-
tribution respectively, as well as higher order moments,
are zero for symmetric potentials and a Gaussian distri-
bution about the mean. If one applies a magnetic field,
however, higher moments may have to be considered.
Taking U = ∆θ = θ(R) − θ(R′) and noting that 〈U〉
is identically zero assuming a symmetric confining po-
tential of the spins, we get to the second order of the
cumulant expansion,

C(R) = S2(e exp

[
−1

2

〈
(∆θ)2

〉]
. (15)

We can evaluate < (∆θ)2 > by expanding θ(R) in Fourier
space [3] and referring to our formulation of the partition
function (Eq. 12). Taking θ(R) = 1√

N

∑
k θkeik·R we get

〈
(∆θ)2

〉
=

〈
(θ(R) − θ(R′))2

〉

=

〈
1

N

∑
kk′

(
eik·R − eik·R′

)
θk

(
e−ik′·R − e−ik′·R′

)
θ∗k′

〉

=
2

N

∑
k

(1 − cos [k · (R − R′)])
〈|θk|2

〉

⇒ 2(e

{∫
dk

(
1 − eik·R) 〈|θk|2

〉}
(16)

where in the last step we have referenced the variance
with respect to the spin vector located at the origin (R′ =
0). We know from our partition function (Eq. 12) that

Eθ(k) =
1

2
ω2

k|θk|2,

so by the equipartition theorem

〈Eθ(k)〉 =
1

2
ω2

k

〈|θk|2
〉

=
1

2
kBT.


