an eigensubspace by the substitution 8 = Q8 where
Q is the matrix which diagonalizes A.

6! Q" AQ,

= 6/ Do, (6)
= |0y

01, A0R

We can find the eigenvalues A\ = w,% by considering the
approach outlined in Mazenko [1]. We begin by defining

AR = o o,
52 0 0
=7 szl:{l JRr, R, mm[o(fiw — 0(Ry))?
= JS*> [6r, R, — OR,+aR,] (7)

a

Using this result, we can now find the dynamical matrix

D(Rla R]) = 6R¢,Rj Z¢(R17 Rl) - ¢(Ri7 R‘])
R,

JSs? lz dR,a — 2d5R,0] (8)

where d is the dimension of the system, and we have as-
sumed a hypercubic lattice. Taking the Fourier transform
of Equation 8 we obtain our dispersion relation

D(R)

wi = D(k) =2J5%d[1 — cos(k - a)]
— 4J52dsin® (?)

~ JS?%d(k-a)? for k small (9)

Thus we see that wy depends linearly on k£ and the con-
stant of proportionality, which represents the phase ve-
locity of the spin wave is given by

¢y = VTdSa~ VT (10)

That is, the wave speed goes as the square root of the ex-
change coupling energy. We can now rewrite our Hamil-
tonian

H

H0+H0

S2ANJ 1
- 74 +§Zw,§|0k|2 (11)
k

setting A = e #Ho the associated partition function is
then

Qn

o0
A/ AN G, e~ 7 TR wilorl?
0

2wk T
Al =7 (12)
k k

LONG RANGE SPIN CORRELATIONS

We can evaluate long range spin correlations in our
system by computing the mean value of spin-spin inter-
actions between different locations in our lattice.

C(R) = (SR, ' SRa)
= S%{cos[d(R) — O(R)])
_ e <ei[0(R)—9(R/)]> (13)

The evaluation of this average may be determined by
taking a cumulant expansion [2] of the form

(V) = exp {i(Cl (U)—%(Cg (U)+..l

exp [z W) - 5 {0~ @) +] (14)

The cumulant is an expansion in statistical moments
about the distribution mean. The third and fourth cu-
mulants, measuring the skewness and kurtosis of the dis-
tribution respectively, as well as higher order moments,
are zero for symmetric potentials and a Gaussian distri-
bution about the mean. If one applies a magnetic field,
however, higher moments may have to be considered.
Taking U = Af = 0(R) — 0(R’) and noting that (U)
is identically zero assuming a symmetric confining po-
tential of the spins, we get to the second order of the
cumulant expansion,

C(R) = 5%Re exp {—% <(A6)2>] . (15)

We can evaluate < (A#)? > by expanding 6(R) in Fourier
space [3] and referring to our formulation of the partition
function (Eq. 12). Taking (R) = \/—% > Oe™ R we get

((a0)*) = ((6(R) - O(R"))?)
_ <% Z (eik»R _ eik-R’) O (e—ik’-R _ e—ik/»R/) 9§,>

kk’

= %Z (1 —coslk- (R—R)]) (|0x]*)

N 2§Re{/dk (1 kR <|9k|2>} (16)

where in the last step we have referenced the variance
with respect to the spin vector located at the origin (R’ =
0). We know from our partition function (Eq. 12) that

1
Eo(k) = 3161,

so by the equipartition theorem

(Bo(k)) = 22 (|64]2) = &

— —kpT.
2 9B



