And yet the CPU per-core power consumption is essentially the same. You are confusing individual design targets with the full system design targets. So far, Apple designs their CPU cores with a 5W thermal envelope in mind, and their goal is maximizing the performance without blowing this envelope. After all, the same core has to work on mobile and desktop.
More nonsense! First of all the iPhone never needed a fan, so it fits well into any thermal envelope. And with high-performance and high-efficiency cores there are at least two power consumption levels. But more importantly, the process node, battery capacity and core count change with every new iPhone generation. So it's absolute nonsense to target a specific per core power consumption. The whole system must be in a good power-vs-performance balance to deliver so-called "all-day battery life". How many hours that means remains vague. The cores rarely run at 100% utilization and consume far less than the maximum anyway. Apple's design goal is that the
consumer experience is that overnight charging is enough. They don't give a **** about any artificial 5W limit.
ARM chips were always low-power because those are the applications ARM has focused on. Intel had no interest in the low-power market, exclusively designing high-power CPUs.
The nonsense continues. RISC started as an experiment. Nobody knew how big the efficiency gains of a reduced instruction set might be. They discovered by accident that their new chips even ran at incredible low power. At the beginning this was nothing but a curiosity. Initially ARM wanted to build more powerful desktop CPUs. They didn't target the low-power market, because such a market didn't exist in volumes back then. The Newton, iPods and cellphones only created demand for millions of low-power chips after ARM made it possible to build powerful handheld devices.
But again, none of this has anything to do with the fact that ARM has the word "RISC" in their name. ARM ISA went though multiple iterations, and current 64-bit ARM is a huge departure from the old ARM1/2/3 instruction sets.
Yeah, because now it developed into a 64-bit, multicore architecture, capable to compete in the desktop market. But the basis underneath is still RISC. −
You can take a reliable Formula 1 car and tune it to be faster and still reliable. But you can't start with a fast but unreliable motor and add on reliability later. − It's not enough to invest infinite time and money to make x86 as efficient as arm64. You need to cut out the rarely used instructions, which only bloat the design. You need to become incompatible with your entire software ecosystem and add back x86 support via an extra Rosetta 2 translation layer. It's the only way.
Let me give you another example. The new 24" iMac is only 11.5 mm thick and weighs just 4.5 kg. Yes, Apple prioritized thin and light for years, but that doesn't mean without this head start other companies could make an USB-A port fit at the back of an iMac. The USB-A plug is too deep, it would literally poke out at the front. They could barely fit in a headphone jack from the side. And on an iPad you can't fit a headphone jack at all.
If you want your laptop to be light to carry around, you have to make it thin. Because volume equals weight. The thicker laptop will always be the heavier one. So you absolutely need to cut native support for the vast ecosystem of USB-A devices or else you put a limit on progress. Mac mini and Mac Pro can keep USB-A ports, but none of Apple's other devices. You can still support the old industry standard via dongles, but in no other way.
And now back to Metal and why Apple simply can't support triple-A games, which rely on old legacy APIs designed to run on Nvidia cards the size and prize of a house. It would absolutely destroy the MacBook Pro and everything that's good about it. Game studios better target Apple Silicon or they've lost me and billions of others as their customer.